Mark schemes

Q1.
$\frac{20}{100} \times 50$ or 10

2
SC1 for 32

Q2.
(a) $\frac{3}{4} \times \frac{3}{4} \times 15$
or
$\frac{3}{4} \times 15$ or 11.25
and $\frac{3}{4} \times$ their 11.25
oe
$8.4(375)$ or 8.44 or 8.438
or $\frac{135}{16}$ or $8 \frac{7}{16}$

Additional Guidance
8.43 or 8.437
8.4 seen, answer 8
$\frac{3}{4}$ of 11.25 (unless correctly evaluated)
$\frac{3}{4} \times 8.4375$, answer 6.328 (further work)
M1A0
$11.25+8.4375$, answer 19.6875 (further work)
(b) Alternative method 1

Ticks second box and [7.425, 7.5375]
or
Ticks second box and correctly evaluates $\frac{2}{3} \times$ their 11.25
ft correct box ticked for comparing with their answer to (a)
B1ft [7.425, 7.5375]
with no or incorrect decision
or
Correctly evaluates
$\frac{2}{3} \times$ their 11.25
with no or incorrect decision

Alternative method 2

Ticks second box and valid comparison
eg $\frac{8}{12}$ and $\frac{9}{12}$
$0.66 \ldots$ or 0.67 and 0.75
66.(...)\% or 67\% and 75\%
$8 \frac{7}{16}$
clear diagrams showing $\frac{2}{3}$ and $\frac{3}{4}$
B1 Ticks second box and incomplete comparison
eg $\frac{8}{12}$ and $\frac{3}{4}$
two thirds is less than three quarters
$\frac{3}{4} \times \frac{3}{4}=\frac{9}{16}$ and $\frac{3}{4} \times \frac{2}{3}=\frac{6}{12}$
or
Valid comparison (that would score B2) with no or incorrect decision

Additional Guidance

In Alt 1 only follow through their answer to (a) for the comparison, the working for $\frac{2}{3}$ of their 11.25 must be correct
(a) answer 6.5 (b) Ticks first box and 7.5 seen

Accept $0.66 \ldots$ or 0.67 for $\frac{2}{3}$
Using 0.6 for $\frac{2}{3}$

Q3.
(a) Alternative method 1
1.015 seen
or 4000×1.015
or 4060
$4000 \times 1.015^{2}=4120.90$

Alternative method 2

0.015×4000 or 60
or 4060
or 0.015×4060 or 60.9
$4000+60+60.9=4120.90$

Additional Guidance
Allow $£ 4120.90$ p
(b) 4120.9×1.014
or 4120.9×0.014 or 57.6926
or 57.69 or 57.70
oe
4120.9 + their 57.6926
or 4178.5926
their 4178.5926×0.0135
oe
56.4110001 or 56.41 or 56.42 and 57.6926 or 57.69 or 57.70 and Less

Q4.
(a) $£ 1500 \times 1.016^{2}$

Alternative method 1
[1548.38, 1548.39]
ft their part (a)
B1ft
1500×1.018 or 1527

```
1500\times1.018\times1.013
or 1527\times1.013
or [1546.85, 1546.86]
oe
M1dep
[1548.38, 1548.39]
and [1546.85, 1546.86] and Dev's
    Oe
    ft their part (a)
    A1ft
Alternative method 2
1.0162 or 1.032(256) or 1.0323
    M1
1 . 0 1 8 \text { or 1.013 seen}
1.018 * 1.013 or 1.031(234)
M1dep
1.032(256) and 1.031 and Dev's
Additional Guidance
Note incorrect answers from part (a) for Alt 1
\(£ 1500 \times 1.6 \times 2=£ 4800\)
\(£ 1500 \times 1.6^{2}=£ 3840\)
\(£ 1500 \times 1.016 \times 2=£ 3048\)
```


Q5.

Alternative Method 1
1.032 seen
5000×1.032^{3} oe
5495.523...

May be implied
5495.52
ft their answer rounded to $2 d p$
SC1 5480

Alternative method 2
$5000+5000 \times 0.032$ or 5160 oe
their $5160+$ their 5160×0.032
or 5325.12
and
their $5325.12+$ their 5325.12×0.032
5495.523...

May be implied
5495.52
ft their answer rounded to $2 d p$
SC1 5480
B1ft

Q6.

Alternative method 1

1.015
oe e.g. 101.5% or $1+\frac{1.5}{100}$
Implied by 6090
6000×1.015^{n}
for any positive integer $n>1$
oe
Implied by 6181.(...)

11
If showing trials for 10 and/or 11 years, must have
$6000 \times 1.015^{10}=6963 .(\ldots)$
and/or
$6000 \times 1.015^{11}=7067 .(\ldots)$ or 7068
If showing totals from year on year for 10 and/or 11 years,
must have
(Y10) [6963.21, 6963.30]
and/or
(Y11) [7067.65, 7067.75]

Alternative method 2

1.015
oe e.g. 101.5% or $1+\frac{1.5}{100}$
Implied by 6090

Evaluates 1.015^{n} for any positive integer $n>1$ and $7000 \div 6000$ or $1.166 \ldots$ or 1.167 or 1.17

11
If showing trials for ${ }^{n}=10$ and/or 11 must have
$1.015^{10}=[1.160,1.161]$
and/or
$1.015^{11}=[1.177,1.178]$

Additional Guidance

Values for working year on year
Y1 $6000 \times 1.015=6090$
Y2 $6090 \times 1.015=6181.35$
Y3 $6181.35 \times 1.015=[6274.07,6274.08]$
Y4 $[6274.07,6274.08] \times 1.015=[6368.18,6368.20]$
Y5 $[6368.18,6368.20] \times 1.015=[6463.70,6463.73]$
Y6 $[6463.70,6463.73] \times 1.015=[6560.65,6560.69]$
Y7 $[6560.65,6560.69] \times 1.015=[6659.05,6659.11]$
Y8 $[6659.05,6659.11] \times 1.015=[6758.93,6759.00]$
Y9 $[6758.93,6759.00] \times 1.015=[6860.31,6860.39]$
Y10 [6860.31, 6860.39] $\times 1.015=[6963.21,6963.30]$
Y11 [6963.21, 6963.30] $\times 1.015=[7067.65,7067.75]$
Answer 11 with no working
$1000 \div 90=11.1$ Answer 11

Q7.

Alternative method 1

```
25
and 18000 - their 4500
or 18000 * (1-0.25)
or 18 000 × 0.75
or 13500
or 0.88
```

oe

Their $13500 \times(1-0.12)^{4}$
or their 13500×0.88^{4}

Their $13500 \times(1-0.12)^{3}$
or their 13500×0.88^{3}
or 9199.87 or 9199.88 or 9199.90
or 9200
oe
Complete method for at least 4 years
M1dep
8095.88 or 8095.89 or 8095.90
or 8096 or 8096.00
or 8100 or 8100.00
Correct money notation

Alternative method 2

$\frac{25}{100} \times 18000$ or 4500
and 18000 - their 4500
or 13500
or 0.88
oe

13 500, 11 880, $10454 .(\ldots) 9199 .(\ldots)$
oe
Complete method for at least 4 years
8095.88 or 8095.89 or 8095.90
or 8096 or 8096.00
or 8100 or 8100.00
Correct money notation

Additional Guidance

Condone e.g. £8095.88p
8095.887...

Note the values for successive calculations are $13500,11880,10454.4,9199.87(2)$, 8095.88(736)

The values for successive savings are 4500, 1620, 1425.6, 1254.52(8), 1103.98
For method marks allow rounding or truncating of their totals or savings

Q8.
100(\%) - 20(\%) or 80(\%)
or $1-0.2$ or 0.8
8000×0.8^{5}

> oe
> eg 8000×0.8 or 6400
> and their 6400×0.8 or 5120
> and their 5120×0.8 or 4096
> and their 4096×0.8 or $3276(.80)$
> and their $3276(.80) \times 0.8$

Q9.
1.05 seen oe

B1
$9000 \div 1.05^{3}$

$$
\begin{aligned}
& 9000 \div 1.05(=8571 .(\ldots)) \\
& \text { their } 8571 .(\ldots) \div 1.05(=8163 .(\ldots)) \\
& \text { their } 8163 .(\ldots) \div 1.05(=7774 .(\ldots))
\end{aligned}
$$

7774.54 or 7774.55 or 7775

Alternative method

1.05 seen oe

B1
Two trials correctly evaluated of the form $n \times 1.05^{3}$ with second trial closer to $£ 9000$

Two trials correctly evaluated of the form $n \times 1.05^{3}$ with second trial closer to $£ 9000$ and
both values of n in range [7700, 7800]
7774.54 or 7774.55 or 7775

Q10.
1800×1.04 or 1872 oe

$$
1800 \times 1.04^{n}=2000
$$

1800×1.04^{2} or 1946.88 or 1946 or 1947 oe
Accept rounding [1946, 1947]
$2000 \div 1800=1.04^{n}$
1800×1.04^{3} or $2024.7 \ldots$ oe
Accept [2023, 2025]
Between 2 and 3 years

3
Must not come from simple interest

Q11.
100(\%) - 14(\%) or 86(\%)
or $1-0.14$ or 0.86
Implied by 87 139(.5)
101325×0.86^{4}
oe
eg 101325×0.86 or $87139(.5)$
and their 87 139(.5) $\times 0.86$ or 74 939(.97)
and their $74939(.97) \times 0.86$ or $64448(.3742)$
and their $64448(.3742) \times 0.86$
55 425(...)
May be implied by 55000 or 55400 or 55430 or 55426
55000
ft their answer rounded to 2sf

Q12.
($A=$) 22000
$14080=$ their $22000 \times k^{-2}$
oe
$\sqrt{\frac{\text { their } 22000}{14080}}$
or $k^{2}=\frac{\frac{\text { their } 22000}{14080}}{}$
$(k=) 1.25$ or $\frac{5}{4}$

Q13.
(a) $2^{0}=1$
(b) $2=2 \frac{1}{4}$ or $\frac{t}{4}=1$

4
(c) $250 \times 2^{\frac{48}{4}}$

1024000 and Yes

